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The theory of elliptic and hyperelliptic curves has been of crucial importance in the
development of algebraic geometry. Almost all fundamental ideas were first obtained and
generalized from computations and construction carried out for elliptic or hyperelliptic
curves. Examples are elliptic or hyperelliptic integrals, theta functions, Thomae’s formula,
the concept of Jacobians, etc. Some of the classical literature on the subject as well as
the seminal work of Jacobi focus almost entirely on hyperelliptic curves. These lectures
follow mostly the line from [2].

So what is so special about a hyperelliptic curve? To begin with, a generic curve in the
hyperelliptic locus admits a cyclic Galois cover to the projective line. This cover, which
is called the hyperelliptic projection is of degree n = 2 and its branch points determine
the curve in question (up to isomorphism). Hence, studying hyperelliptic curves over al-
gebraically closed fields amounts to studying degree two covers of the projective line. In
other words, it is more convenient to think of a hyperelliptic curve X as a degree two
branched covering f : X → P1.

A natural generalization of the above is to study degree n ≥ 2 cyclic Galois covers.
This means that for a curve X with automorphism group Aut (X ) there is a cyclic group
H = 〈τ〉 normal in Aut (X ) such that the quotient X/H is isomorphic to P1. Such
curves X are called superelliptic curves. The automorphism τ is called the superelliptic
automorphism of X .

There are two different ways of studying an algebraic curves; function fields L/k(x) or
coverings of P1. The goal of this book is the study of algebraic curves via the coverings
of P1 in the tradition of Riemann, Clebsch, Hurwitz, Severi, Grothendieck, Fulton, Fried,
et al. We focus on the cyclic covers of P1 and by doing that we investigate the natural
generalization of the theory of hyperelliptic curves to superelliptic curves. Our goal is to
highlight the theories that can be extended and all the open problems that come with this
generalization. We investigate the correspondence from the group theory data of the cover
f : X → P1, via Riemann Existence Theorem (RET), to the field of moduli of X , relations
among the thetanulls on Jac (X ) and the branch points of f : X → P1, the Hurwitz
spaces of coverings with ramification structure as that of f . This enables us to use the full
machinery of group theory to study covers and get more information about the arithmetic
aspects of curves.

As we will see during these lectures, many aspects of the theory of the hyperelliptic
curves can be extended to all superelliptic curves. For example, such curves have affine
equations (over an algebraically closed field) of the form yn = f(x), the list of full au-
tomorphism groups of such curves can be fully determined, as can be determined their
equations and in most cases such curves can be defined over their field of moduli. Most
importantly the full machinery of classical invariant theory of binary forms can be used to
determine their isomorphism classes. It is such theory that makes the study of the mod-
uli space of such curves much more concrete than for general curves. More importantly
the invariant theory connects the theory of superelliptic curves to the weighted projective
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moduli spaces. It is the weighted moduli space and the weighted heights introduced in [1]
which make the study of the arithmetic of the moduli space possible.

1. LECTURE 1: PRELIMINARIES ON CURVES AND THEIR AUTOMORPHISMS

In Lecture 1, we will briefly describe some basic generalities of covering spaces and
monodromy, algebraic curves and their function fields, Weierstrass points and their weights,
and full automorphism groups of curves. Such material prepares us to naturally introduce
the superelliptic curves as a generalization of hyperelliptic curves. Such curves have a
degree n ≥ 2, cyclic Galois covering π : Xg → P1. We denote the branched points
of this cover by the roots of some polynomial f(x) and show that the curve has equation
yn = f(x). We also determine the list of possible full automorphism group of a superellip-
tic curve Xg of genus g ≥ 2. Furthermore, we study the Weierstrass points of superelliptic
curves and show that they are projected to the roots of f(x) as in the hyperelliptic case.

2. LECTURE 2: FAMILIES OF COVERS AND MODULI SPACES

In Lecture 2, we focus on families of covers of P1 with fixed ramification structure. Us-
ing group theory to study such families leads us to Hurwitz spaces, braid group action, and
a full stratification of the moduli space of curves. We further study the loci of superelliptic
curves in the moduli space. We briefly introduce the moduli space of curvesMg0,r and its
Deligne-Mumford compactificationMg0,r. Then we focus on points of theMg0,r which
correspond to curves with automorphisms. We discuss the inclusions between such loci
and give the complete stratification of the moduli space for genii g = 3, 4.

Since isomorphism classes of superelliptic curves yn = f(x) defined over a field k
correspond to GL2(k)-equivalence classes of degree d = deg f binary forms, we focus
on the classical invariant theory of binary forms. We give the preliminaries of classical
invariant theory of degree d binary forms including the ring of invariantsRd and explicitly
determine the ring of invariants for binary sextics and binary octavics. The ring of invari-
antsRd is a graded ring. Its projective variety is a weighted projective variety. Further we
study the weighted moduli space WPn

w(k) for a given set of weights w = (q0, . . . , qn).
Weighted projective spaces are a much more convenient way to study superelliptic curves.
Weighted greatest common divisor and weighted height are introduced in order to study
the arithmetic properties of WPn

w(k). The weighted heights enable us to "sort" and "count"
points in the weighted projective space. For such heights it is true the Northcott’s theorem
and all the height machinery a-la Weil. This opens a new and exiting direction of research
on the arithmetic of weighted varieties.

3. LECTURE 3: SUPERELLIPTIC JACOBIANS

In Lecture 3, we study the Jacobians of superelliptic curves. Theta functions of superel-
liptic curves are discussed. The classical Thomae’s formula for hyperelliptic curves relates
the branch points of the hyperelliptic projection to the thetanulls. It is a natural question
to ask if such formula can be generalized to cyclic or superelliptic curves. During the last
decade ha been some considerable progress on this direction. We describe a Thomae like
formula for cyclic curves. Furthermore, we study Jacobian varieties and briefly describe
Mumford’s representation of divisors and Cantor’s algorithm for addition of points on a
hyperelliptic Jacobian. Generalizations of this approach to superelliptic Jacobians are dis-
cussed in the rest of the chapter. We generalize the cord and secant method of addition
on elliptic and hyperelliptic curves to all superelliptic curves. Superelliptic curves have
nice bases of the space of holomorphic differentials, which give a monomial basis for the
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function field of the curve over the ground field. When this basis is ordered according to
the order of this monomials at a fixed point P ∈ X , then it provides a way to define a curve
Y similar to a line adding two points on an elliptic curve.

4. LECTURE 4: INTEGRAL MINIMAL MODELS

In Lecture 4 we will be focused on the arithmetic of superelliptic curves. Given a point
in the moduli space Mg or WP(g), defined over a number field K, the first arithmetic
question is whether the corresponding curve is defined over K. As we know, this is not
true in general. However, for superelliptic curves we are able to determine in the majority
of cases if there is a curve defined over K. Once a curve is defined over a number field K,
then it is defined over its ring of integersOK . The next natural question is if such equation
can be found explicitly and whether it can be made minimal. We study minimal models
of superelliptic curves when a moduli point is given. This is well known, due to work
of Tate, for elliptic curves and Liu for genus two. We describe briefly Tate’s algorithm.
For superelliptic curves we we say that a curve has minimal model when it has a minimal
moduli point . We give necessary and sufficient condition on the set of invariants of the
curve that the curve has a minimal model. Moreover an algorithm is provided how to find
such minimal model. Further we introduce Neron-Tate heights and how they are applied
to superelliptic Jacobians. Neron-Tate models of superelliptic Jacobians will be discussed.

These lectures are intended for advanced graduate students or young mathematicians
who want to work in the arithmetic of superelliptic curves. We assume that the reader has
familiarity with basic theoretical aspects of algebraic curves, Riemann surfaces, Jacobian
varieties, which are part of the math folklore in the subject.

REFERENCES

[1] L. Beshaj, J. Gutierrez, and T. Shaska, Weighted greatest common divisors and weighted heights, Journal of
Number Theory (2019).

[2] A. Malmendier and T. Shaska, From hyperelliptic to superelliptic curves, Albanian J. Math. 13 (2019), no. 1,
107–200. MR3978315

http://www.ams.org/mathscinet-getitem?mr=3978315

	1. Lecture 1: Preliminaries on curves and their automorphisms
	2. Lecture 2: Families of covers and moduli spaces
	3. Lecture 3: Superelliptic Jacobians
	4. Lecture 4: Integral minimal models
	References

